view Output/usbMuxUart/output_com.c @ 308:ab4515606277

Fix whitespace Use a consistent standard - Tabs in front for indenting, spaces after for anything else. This way everything stays nice and lined up while also letting users change there prefered indent level. Most of the new files from Haata where already in this format.
author Rowan Decker <Smasher816@gmail.com>
date Sun, 08 Mar 2015 18:40:01 -0700
parents d5bf41d7f7ef
children 4f47971c45c2
line wrap: on
line source

/* Copyright (C) 2014-2015 by Jacob Alexander
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

// ----- Includes -----

// Compiler Includes
#include <Lib/OutputLib.h>

// Project Includes
#include <cli.h>
#include <led.h>
#include <print.h>
#include <scan_loop.h>

// USB Includes
#if defined(_at90usb162_) || defined(_atmega32u4_) || defined(_at90usb646_) || defined(_at90usb1286_)
#elif defined(_mk20dx128_) || defined(_mk20dx128vlf5_) || defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
#include <uartOut/arm/uart_serial.h>
#include <pjrcUSB/arm/usb_dev.h>
#include <pjrcUSB/arm/usb_keyboard.h>
#include <pjrcUSB/arm/usb_serial.h>
#endif

// Local Includes
#include "output_com.h"



// ----- Macros -----

// Used to build a bitmap lookup table from a byte addressable array
#define byteLookup( byte ) case (( byte ) * ( 8 )):         bytePosition = byte; byteShift = 0; break; \
			   case (( byte ) * ( 8 ) + ( 1 )): bytePosition = byte; byteShift = 1; break; \
			   case (( byte ) * ( 8 ) + ( 2 )): bytePosition = byte; byteShift = 2; break; \
			   case (( byte ) * ( 8 ) + ( 3 )): bytePosition = byte; byteShift = 3; break; \
			   case (( byte ) * ( 8 ) + ( 4 )): bytePosition = byte; byteShift = 4; break; \
			   case (( byte ) * ( 8 ) + ( 5 )): bytePosition = byte; byteShift = 5; break; \
			   case (( byte ) * ( 8 ) + ( 6 )): bytePosition = byte; byteShift = 6; break; \
			   case (( byte ) * ( 8 ) + ( 7 )): bytePosition = byte; byteShift = 7; break



// ----- Function Declarations -----

void cliFunc_kbdProtocol( char* args );
void cliFunc_readLEDs   ( char* args );
void cliFunc_readUART   ( char* args );
void cliFunc_sendKeys   ( char* args );
void cliFunc_sendUART   ( char* args );
void cliFunc_setKeys    ( char* args );
void cliFunc_setMod     ( char* args );



// ----- Variables -----

// Output Module command dictionary
CLIDict_Entry( kbdProtocol, "Keyboard Protocol Mode: 0 - Boot, 1 - OS/NKRO Mode" );
CLIDict_Entry( readLEDs,    "Read LED byte:" NL "\t\t1 NumLck, 2 CapsLck, 4 ScrlLck, 16 Kana, etc." );
CLIDict_Entry( readUART,    "Read UART buffer until empty." );
CLIDict_Entry( sendKeys,    "Send the prepared list of USB codes and modifier byte." );
CLIDict_Entry( sendUART,    "Send characters over UART0." );
CLIDict_Entry( setKeys,     "Prepare a space separated list of USB codes (decimal). Waits until \033[35msendKeys\033[0m." );
CLIDict_Entry( setMod,      "Set the modfier byte:" NL "\t\t1 LCtrl, 2 LShft, 4 LAlt, 8 LGUI, 16 RCtrl, 32 RShft, 64 RAlt, 128 RGUI" );

CLIDict_Def( outputCLIDict, "USB Module Commands" ) = {
	CLIDict_Item( kbdProtocol ),
	CLIDict_Item( readLEDs ),
	CLIDict_Item( readUART ),
	CLIDict_Item( sendKeys ),
	CLIDict_Item( sendUART ),
	CLIDict_Item( setKeys ),
	CLIDict_Item( setMod ),
	{ 0, 0, 0 } // Null entry for dictionary end
};


// Which modifier keys are currently pressed
// 1=left ctrl,    2=left shift,   4=left alt,    8=left gui
// 16=right ctrl, 32=right shift, 64=right alt, 128=right gui
	uint8_t  USBKeys_Modifiers    = 0;
	uint8_t  USBKeys_ModifiersCLI = 0; // Separate CLI send buffer

// Currently pressed keys, max is defined by USB_MAX_KEY_SEND
	uint8_t  USBKeys_Keys   [USB_NKRO_BITFIELD_SIZE_KEYS];
	uint8_t  USBKeys_KeysCLI[USB_NKRO_BITFIELD_SIZE_KEYS]; // Separate CLI send buffer

// System Control and Consumer Control 1KRO containers
	uint8_t  USBKeys_SysCtrl;
	uint16_t USBKeys_ConsCtrl;

// The number of keys sent to the usb in the array
	uint8_t  USBKeys_Sent    = 0;
	uint8_t  USBKeys_SentCLI = 0;

// 1=num lock, 2=caps lock, 4=scroll lock, 8=compose, 16=kana
volatile uint8_t  USBKeys_LEDs = 0;

// Protocol setting from the host.
// 0 - Boot Mode
// 1 - NKRO Mode (Default, unless set by a BIOS or boot interface)
volatile uint8_t  USBKeys_Protocol = 0;

// Indicate if USB should send update
// OS only needs update if there has been a change in state
USBKeyChangeState USBKeys_Changed = USBKeyChangeState_None;

// the idle configuration, how often we send the report to the
// host (ms * 4) even when it hasn't changed
	uint8_t  USBKeys_Idle_Config = 125;

// count until idle timeout
	uint8_t  USBKeys_Idle_Count = 0;

// Indicates whether the Output module is fully functional
// 0 - Not fully functional, 1 - Fully functional
// 0 is often used to show that a USB cable is not plugged in (but has power)
	uint8_t  Output_Available = 0;



// ----- Capabilities -----

// Sends a Consumer Control code to the USB Output buffer
void Output_consCtrlSend_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
	// Display capability name
	if ( stateType == 0xFF && state == 0xFF )
	{
		print("Output_consCtrlSend(consCode)");
		return;
	}

	// Not implemented in Boot Mode
	if ( USBKeys_Protocol == 0 )
	{
		warn_print("Consumer Control is not implemented for Boot Mode");
		return;
	}

	// TODO Analog inputs
	// Only indicate USB has changed if either a press or release has occured
	if ( state == 0x01 || state == 0x03 )
		USBKeys_Changed |= USBKeyChangeState_Consumer;

	// Only send keypresses if press or hold state
	if ( stateType == 0x00 && state == 0x03 ) // Release state
		return;

	// Set consumer control code
	USBKeys_ConsCtrl = *(uint16_t*)(&args[0]);
}


// Sends a System Control code to the USB Output buffer
void Output_sysCtrlSend_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
	// Display capability name
	if ( stateType == 0xFF && state == 0xFF )
	{
		print("Output_sysCtrlSend(sysCode)");
		return;
	}

	// Not implemented in Boot Mode
	if ( USBKeys_Protocol == 0 )
	{
		warn_print("System Control is not implemented for Boot Mode");
		return;
	}

	// TODO Analog inputs
	// Only indicate USB has changed if either a press or release has occured
	if ( state == 0x01 || state == 0x03 )
		USBKeys_Changed |= USBKeyChangeState_System;

	// Only send keypresses if press or hold state
	if ( stateType == 0x00 && state == 0x03 ) // Release state
		return;

	// Set system control code
	USBKeys_SysCtrl = args[0];
}


// Adds a single USB Code to the USB Output buffer
// Argument #1: USB Code
void Output_usbCodeSend_capability( uint8_t state, uint8_t stateType, uint8_t *args )
{
	// Display capability name
	if ( stateType == 0xFF && state == 0xFF )
	{
		print("Output_usbCodeSend(usbCode)");
		return;
	}

	// Depending on which mode the keyboard is in the USB needs Press/Hold/Release events
	uint8_t keyPress = 0; // Default to key release, only used for NKRO
	switch ( USBKeys_Protocol )
	{
	case 0: // Boot Mode
		// TODO Analog inputs
		// Only indicate USB has changed if either a press or release has occured
		if ( state == 0x01 || state == 0x03 )
			USBKeys_Changed = USBKeyChangeState_MainKeys;

		// Only send keypresses if press or hold state
		if ( stateType == 0x00 && state == 0x03 ) // Release state
			return;
		break;
	case 1: // NKRO Mode
		// Only send press and release events
		if ( stateType == 0x00 && state == 0x02 ) // Hold state
			return;

		// Determine if setting or unsetting the bitfield (press == set)
		if ( stateType == 0x00 && state == 0x01 ) // Press state
			keyPress = 1;
		break;
	}

	// Get the keycode from arguments
	uint8_t key = args[0];

	// Depending on which mode the keyboard is in, USBKeys_Keys array is used differently
	// Boot mode - Maximum of 6 byte codes
	// NKRO mode - Each bit of the 26 byte corresponds to a key
	//  Bits   0 - 160 (first 20 bytes) correspond to USB Codes 4   - 164
	//  Bits 161 - 205 (last 6 bytes)   correspond to USB Codes 176 - 221
	//  Bits 206 - 208 (last byte)      correspond to the 3 padded bits in USB (unused)
	uint8_t bytePosition = 0;
	uint8_t byteShift = 0;
	switch ( USBKeys_Protocol )
	{
	case 0: // Boot Mode
		// Set the modifier bit if this key is a modifier
		if ( (key & 0xE0) == 0xE0 ) // AND with 0xE0 (Left Ctrl, first modifier)
		{
			USBKeys_Modifiers |= 1 << (key ^ 0xE0); // Left shift 1 by key XOR 0xE0
		}
		// Normal USB Code
		else
		{
			// USB Key limit reached
			if ( USBKeys_Sent >= USB_BOOT_MAX_KEYS )
			{
				warn_print("USB Key limit reached");
				return;
			}

			// Make sure key is within the USB HID range
			if ( key <= 104 )
			{
				USBKeys_Keys[USBKeys_Sent++] = key;
			}
			// Invalid key
			else
			{
				warn_msg("USB Code above 104/0x68 in Boot Mode: ");
				printHex( key );
				print( NL );
			}
		}
		break;

	case 1: // NKRO Mode
		// Set the modifier bit if this key is a modifier
		if ( (key & 0xE0) == 0xE0 ) // AND with 0xE0 (Left Ctrl, first modifier)
		{
			if ( keyPress )
			{
				USBKeys_Modifiers |= 1 << (key ^ 0xE0); // Left shift 1 by key XOR 0xE0
			}
			else // Release
			{
				USBKeys_Modifiers &= ~(1 << (key ^ 0xE0)); // Left shift 1 by key XOR 0xE0
			}

			USBKeys_Changed |= USBKeyChangeState_Modifiers;
			break;
		}
		// First 20 bytes
		else if ( key >= 4 && key <= 164 )
		{
			// Lookup (otherwise division or multiple checks are needed to do alignment)
			uint8_t keyPos = key - 4; // Starting position in array
			switch ( keyPos )
			{
				byteLookup( 0 );
				byteLookup( 1 );
				byteLookup( 2 );
				byteLookup( 3 );
				byteLookup( 4 );
				byteLookup( 5 );
				byteLookup( 6 );
				byteLookup( 7 );
				byteLookup( 8 );
				byteLookup( 9 );
				byteLookup( 10 );
				byteLookup( 11 );
				byteLookup( 12 );
				byteLookup( 13 );
				byteLookup( 14 );
				byteLookup( 15 );
				byteLookup( 16 );
				byteLookup( 17 );
				byteLookup( 18 );
				byteLookup( 19 );
			}

			USBKeys_Changed |= USBKeyChangeState_MainKeys;
		}
		// Last 6 bytes
		else if ( key >= 176 && key <= 221 )
		{
			// Lookup (otherwise division or multiple checks are needed to do alignment)
			uint8_t keyPos = key - 176; // Starting position in array
			switch ( keyPos )
			{
				byteLookup( 20 );
				byteLookup( 21 );
				byteLookup( 22 );
				byteLookup( 23 );
				byteLookup( 24 );
				byteLookup( 25 );
			}

			USBKeys_Changed |= USBKeyChangeState_SecondaryKeys;
		}
		// Invalid key
		else
		{
			warn_msg("USB Code not within 4-164 (0x4-0xA4) or 176-221 (0xB0-0xDD) NKRO Mode: ");
			printHex( key );
			print( NL );
			break;
		}

		// Set/Unset
		if ( keyPress )
		{
			USBKeys_Keys[bytePosition] |= (1 << byteShift);
			USBKeys_Sent++;
		}
		else // Release
		{
			USBKeys_Keys[bytePosition] &= ~(1 << byteShift);
			USBKeys_Sent++;
		}

		break;
	}
}



// ----- Functions -----

// USB Module Setup
inline void Output_setup()
{
	// Setup UART
	uart_serial_setup();
	print("\033[2J"); // Clear screen

	// Initialize the USB, and then wait for the host to set configuration.
	// This will hang forever if USB does not initialize
	usb_init();

	while ( !usb_configured() );

	// Register USB Output CLI dictionary
	CLI_registerDictionary( outputCLIDict, outputCLIDictName );

	// Zero out USBKeys_Keys array
	for ( uint8_t c = 0; c < USB_NKRO_BITFIELD_SIZE_KEYS; c++ )
		USBKeys_Keys[ c ] = 0;
}


// USB Data Send
inline void Output_send()
{
	// Boot Mode Only, unset stale keys
	if ( USBKeys_Protocol == 0 )
		for ( uint8_t c = USBKeys_Sent; c < USB_BOOT_MAX_KEYS; c++ )
			USBKeys_Keys[c] = 0;

	// Send keypresses while there are pending changes
	while ( USBKeys_Changed )
		usb_keyboard_send();

	// Clear modifiers and keys
	USBKeys_Modifiers = 0;
	USBKeys_Sent      = 0;

	// Signal Scan Module we are finished
	switch ( USBKeys_Protocol )
	{
	case 0: // Boot Mode
		Scan_finishedWithOutput( USBKeys_Sent <= USB_BOOT_MAX_KEYS ? USBKeys_Sent : USB_BOOT_MAX_KEYS );
		break;
	case 1: // NKRO Mode
		Scan_finishedWithOutput( USBKeys_Sent );
		break;
	}
}


// Sets the device into firmware reload mode
inline void Output_firmwareReload()
{
	uart_device_reload();
}


// USB Input buffer available
inline unsigned int Output_availablechar()
{
	return usb_serial_available() + uart_serial_available();
}


// USB Get Character from input buffer
inline int Output_getchar()
{
	// XXX Make sure to check output_availablechar() first! Information is lost with the cast (error codes) (AVR)
	if ( usb_serial_available() > 0 )
	{
		return (int)usb_serial_getchar();
	}

	if ( uart_serial_available() > 0 )
	{
		return (int)uart_serial_getchar();
	}

	return -1;
}


// USB Send Character to output buffer
inline int Output_putchar( char c )
{
	// First send to UART
	uart_serial_putchar( c );

	// Then send to USB
	return usb_serial_putchar( c );
}


// USB Send String to output buffer, null terminated
inline int Output_putstr( char* str )
{
#if defined(_at90usb162_) || defined(_atmega32u4_) || defined(_at90usb646_) || defined(_at90usb1286_) // AVR
	uint16_t count = 0;
#elif defined(_mk20dx128_) || defined(_mk20dx128vlf5_) || defined(_mk20dx256_) || defined(_mk20dx256vlh7_) // ARM
	uint32_t count = 0;
#endif
	// Count characters until NULL character, then send the amount counted
	while ( str[count] != '\0' )
		count++;

	// First send to UART
	uart_serial_write( str, count );

	// Then send to USB
	return usb_serial_write( str, count );
}


// Soft Chip Reset
inline void Output_softReset()
{
	usb_device_software_reset();
}


// ----- CLI Command Functions -----

void cliFunc_kbdProtocol( char* args )
{
	print( NL );
	info_msg("Keyboard Protocol: ");
	printInt8( USBKeys_Protocol );
}


void cliFunc_readLEDs( char* args )
{
	print( NL );
	info_msg("LED State: ");
	printInt8( USBKeys_LEDs );
}


void cliFunc_readUART( char* args )
{
	print( NL );

	// Read UART buffer until empty
	while ( uart_serial_available() > 0 )
	{
		char out[] = { (char)uart_serial_getchar(), '\0' };
		dPrint( out );
	}
}


void cliFunc_sendKeys( char* args )
{
	// Copy USBKeys_KeysCLI to USBKeys_Keys
	for ( uint8_t key = 0; key < USBKeys_SentCLI; ++key )
	{
		// TODO
		//USBKeys_Keys[key] = USBKeys_KeysCLI[key];
	}
	USBKeys_Sent = USBKeys_SentCLI;

	// Set modifier byte
	USBKeys_Modifiers = USBKeys_ModifiersCLI;
}


void cliFunc_sendUART( char* args )
{
	// Write all args to UART
	uart_serial_write( args, lenStr( args ) );
}


void cliFunc_setKeys( char* args )
{
	char* curArgs;
	char* arg1Ptr;
	char* arg2Ptr = args;

	// Parse up to USBKeys_MaxSize args (whichever is least)
	for ( USBKeys_SentCLI = 0; USBKeys_SentCLI < USB_BOOT_MAX_KEYS; ++USBKeys_SentCLI )
	{
		curArgs = arg2Ptr;
		CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr );

		// Stop processing args if no more are found
		if ( *arg1Ptr == '\0' )
			break;

		// Add the USB code to be sent
		// TODO
		//USBKeys_KeysCLI[USBKeys_SentCLI] = numToInt( arg1Ptr );
	}
}


void cliFunc_setMod( char* args )
{
	// Parse number from argument
	//  NOTE: Only first argument is used
	char* arg1Ptr;
	char* arg2Ptr;
	CLI_argumentIsolation( args, &arg1Ptr, &arg2Ptr );

	USBKeys_ModifiersCLI = numToInt( arg1Ptr );
}