view Scan/ADCTest/analog.c @ 308:ab4515606277

Fix whitespace Use a consistent standard - Tabs in front for indenting, spaces after for anything else. This way everything stays nice and lined up while also letting users change there prefered indent level. Most of the new files from Haata where already in this format.
author Rowan Decker <Smasher816@gmail.com>
date Sun, 08 Mar 2015 18:40:01 -0700
parents 9afed592bcb5
children
line wrap: on
line source

/* Teensyduino Core Library
 * http://www.pjrc.com/teensy/
 * Copyright (c) 2013 PJRC.COM, LLC.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * 1. The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * 2. If the Software is incorporated into a build system that allows
 * selection among a list of target devices, then similar target
 * devices manufactured by PJRC.COM must be included in the list of
 * target devices and selectable in the same manner.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include <Lib/ScanLib.h>

static uint8_t calibrating;
static uint8_t analog_right_shift = 0;
static uint8_t analog_config_bits = 10;
static uint8_t analog_num_average = 4;
static uint8_t analog_reference_internal = 0;

// the alternate clock is connected to OSCERCLK (16 MHz).
// datasheet says ADC clock should be 2 to 12 MHz for 16 bit mode
// datasheet says ADC clock should be 1 to 18 MHz for 8-12 bit mode

#if F_BUS == 48000000
  #define ADC_CFG1_6MHZ   ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(1)
  #define ADC_CFG1_12MHZ  ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(1)
  #define ADC_CFG1_24MHZ  ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(1)
#elif F_BUS == 24000000
  #define ADC_CFG1_6MHZ   ADC_CFG1_ADIV(2) + ADC_CFG1_ADICLK(0)
  #define ADC_CFG1_12MHZ  ADC_CFG1_ADIV(1) + ADC_CFG1_ADICLK(0)
  #define ADC_CFG1_24MHZ  ADC_CFG1_ADIV(0) + ADC_CFG1_ADICLK(0)
#else
#error
#endif

void analog_init(void)
{
	uint32_t num;

	VREF_TRM = 0x60;
	VREF_SC = 0xE1;         // enable 1.2 volt ref

	if (analog_config_bits == 8) {
		ADC0_CFG1 = ADC_CFG1_24MHZ + ADC_CFG1_MODE(0);
		ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
		#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
		ADC1_CFG1 = ADC_CFG1_24MHZ + ADC_CFG1_MODE(0);
		ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
		#endif
	} else if (analog_config_bits == 10) {
		ADC0_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
		ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
		#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
		ADC1_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(2) + ADC_CFG1_ADLSMP;
		ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(3);
		#endif
	} else if (analog_config_bits == 12) {
		ADC0_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
		ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
		#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
		ADC1_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(1) + ADC_CFG1_ADLSMP;
		ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
		#endif
	} else {
		ADC0_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
		ADC0_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
		#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
		ADC1_CFG1 = ADC_CFG1_12MHZ + ADC_CFG1_MODE(3) + ADC_CFG1_ADLSMP;
		ADC1_CFG2 = ADC_CFG2_MUXSEL + ADC_CFG2_ADLSTS(2);
		#endif
	}

	if (analog_reference_internal) {
		ADC0_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
		#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
		ADC1_SC2 = ADC_SC2_REFSEL(1); // 1.2V ref
		#endif
	} else {
		ADC0_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
		#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
		ADC1_SC2 = ADC_SC2_REFSEL(0); // vcc/ext ref
		#endif
	}

	num = analog_num_average;
	if (num <= 1) {
		ADC0_SC3 = ADC_SC3_CAL;  // begin cal
		#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
		ADC1_SC3 = ADC_SC3_CAL;  // begin cal
		#endif
	} else if (num <= 4) {
		ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
		#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
		ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(0);
		#endif
	} else if (num <= 8) {
		ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
		#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
		ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(1);
		#endif
	} else if (num <= 16) {
		ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
		#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
		ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(2);
		#endif
	} else {
		ADC0_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
		#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
		ADC1_SC3 = ADC_SC3_CAL + ADC_SC3_AVGE + ADC_SC3_AVGS(3);
		#endif
	}
	calibrating = 1;
}

static void wait_for_cal(void)
{
	uint16_t sum;

	//serial_print("wait_for_cal\n");
#if defined(_mk20dx128_)
	while (ADC0_SC3 & ADC_SC3_CAL) {
		// wait
	}
#elif defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
	while ((ADC0_SC3 & ADC_SC3_CAL) || (ADC1_SC3 & ADC_SC3_CAL)) {
		// wait
	}
#endif
	__disable_irq();
	if (calibrating) {
		//serial_print("\n");
		sum = ADC0_CLPS + ADC0_CLP4 + ADC0_CLP3 + ADC0_CLP2 + ADC0_CLP1 + ADC0_CLP0;
		sum = (sum / 2) | 0x8000;
		ADC0_PG = sum;
		//serial_print("ADC0_PG = ");
		//serial_phex16(sum);
		//serial_print("\n");
		sum = ADC0_CLMS + ADC0_CLM4 + ADC0_CLM3 + ADC0_CLM2 + ADC0_CLM1 + ADC0_CLM0;
		sum = (sum / 2) | 0x8000;
		ADC0_MG = sum;
		//serial_print("ADC0_MG = ");
		//serial_phex16(sum);
		//serial_print("\n");
#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
		sum = ADC1_CLPS + ADC1_CLP4 + ADC1_CLP3 + ADC1_CLP2 + ADC1_CLP1 + ADC1_CLP0;
		sum = (sum / 2) | 0x8000;
		ADC1_PG = sum;
		sum = ADC1_CLMS + ADC1_CLM4 + ADC1_CLM3 + ADC1_CLM2 + ADC1_CLM1 + ADC1_CLM0;
		sum = (sum / 2) | 0x8000;
		ADC1_MG = sum;
#endif
		calibrating = 0;
	}
	__enable_irq();
}

// ADCx_SC2[REFSEL] bit selects the voltage reference sources for ADC.
//   VREFH/VREFL - connected as the primary reference option
//   1.2 V VREF_OUT - connected as the VALT reference option


#define DEFAULT         0
#define INTERNAL        2
#define INTERNAL1V2     2
#define INTERNAL1V1     2
#define EXTERNAL        0

void analogReference(uint8_t type)
{
	if (type) {
		// internal reference requested
		if (!analog_reference_internal) {
			analog_reference_internal = 1;
			if (calibrating) {
				ADC0_SC3 = 0; // cancel cal
#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
				ADC1_SC3 = 0; // cancel cal
#endif
			}
			analog_init();
		}
	} else {
		// vcc or external reference requested
		if (analog_reference_internal) {
			analog_reference_internal = 0;
			if (calibrating) {
				ADC0_SC3 = 0; // cancel cal
#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
				ADC1_SC3 = 0; // cancel cal
#endif
			}
			analog_init();
		}
	}
}


void analogReadRes(unsigned int bits)
{
	unsigned int config;

	if (bits >= 13) {
		if (bits > 16) bits = 16;
		config = 16;
	} else if (bits >= 11) {
		config = 12;
	} else if (bits >= 9) {
		config = 10;
	} else {
		config = 8;
	}
	analog_right_shift = config - bits;
	if (config != analog_config_bits) {
		analog_config_bits = config;
		if (calibrating) ADC0_SC3 = 0; // cancel cal
		analog_init();
	}
}

void analogReadAveraging(unsigned int num)
{

	if (calibrating) wait_for_cal();
	if (num <= 1) {
		num = 0;
		ADC0_SC3 = 0;
	} else if (num <= 4) {
		num = 4;
		ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(0);
	} else if (num <= 8) {
		num = 8;
		ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(1);
	} else if (num <= 16) {
		num = 16;
		ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(2);
	} else {
		num = 32;
		ADC0_SC3 = ADC_SC3_AVGE + ADC_SC3_AVGS(3);
	}
	analog_num_average = num;
}

// The SC1A register is used for both software and hardware trigger modes of operation.

#if defined(_mk20dx128_)
static const uint8_t channel2sc1a[] = {
	5, 14, 8, 9, 13, 12, 6, 7, 15, 4,
	0, 19, 3, 21, 26, 22, 23
};
#elif defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
static const uint8_t channel2sc1a[] = {
	5, 14, 8, 9, 13, 12, 6, 7, 15, 4,
	0, 19, 3, 19+128, 26, 22, 23,
	5+192, 5+128, 4+128, 6+128, 7+128, 4+192
// A15  26   E1   ADC1_SE5a  5+64
// A16  27   C9   ADC1_SE5b  5
// A17  28   C8   ADC1_SE4b  4
// A18  29   C10  ADC1_SE6b  6
// A19  30   C11  ADC1_SE7b  7
// A20  31   E0   ADC1_SE4a  4+64
};
#endif



// TODO: perhaps this should store the NVIC priority, so it works recursively?
static volatile uint8_t analogReadBusyADC0 = 0;
#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
static volatile uint8_t analogReadBusyADC1 = 0;
#endif

int analogRead(uint8_t pin)
{
	int result;
	uint8_t index, channel;

	//serial_phex(pin);
	//serial_print(" ");

	if (pin <= 13) {
		index = pin;      // 0-13 refer to A0-A13
	} else if (pin <= 23) {
		index = pin - 14; // 14-23 are A0-A9
#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
	} else if (pin >= 26 && pin <= 31) {
		index = pin - 9;  // 26-31 are A15-A20
#endif
	} else if (pin >= 34 && pin <= 40) {
		index = pin - 24;  // 34-37 are A10-A13, 38 is temp sensor,
			    // 39 is vref, 40 is unused (A14 on Teensy 3.1)
	} else {
		return 0;   // all others are invalid
	}

	//serial_phex(index);
	//serial_print(" ");

	channel = channel2sc1a[index];
	//serial_phex(channel);
	//serial_print(" ");

	//serial_print("analogRead");
	//return 0;
	if (calibrating) wait_for_cal();
	//pin = 5; // PTD1/SE5b, pin 14, analog 0

#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
	if (channel & 0x80) goto beginADC1;
#endif

	__disable_irq();
startADC0:
	//serial_print("startADC0\n");
	ADC0_SC1A = channel;
	analogReadBusyADC0 = 1;
	__enable_irq();
	while (1) {
		__disable_irq();
		if ((ADC0_SC1A & ADC_SC1_COCO)) {
			result = ADC0_RA;
			analogReadBusyADC0 = 0;
			__enable_irq();
			result >>= analog_right_shift;
			return result;
		}
		// detect if analogRead was used from an interrupt
		// if so, our analogRead got canceled, so it must
		// be restarted.
		if (!analogReadBusyADC0) goto startADC0;
		__enable_irq();
		yield();
	}

#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
beginADC1:
	__disable_irq();
startADC1:
	//serial_print("startADC0\n");
	// ADC1_CFG2[MUXSEL] bit selects between ADCx_SEn channels a and b.
	if (channel & 0x40) {
		ADC1_CFG2 &= ~ADC_CFG2_MUXSEL;
	} else {
		ADC1_CFG2 |= ADC_CFG2_MUXSEL;
	}
	ADC1_SC1A = channel & 0x3F;
	analogReadBusyADC1 = 1;
	__enable_irq();
	while (1) {
		__disable_irq();
		if ((ADC1_SC1A & ADC_SC1_COCO)) {
			result = ADC1_RA;
			analogReadBusyADC1 = 0;
			__enable_irq();
			result >>= analog_right_shift;
			return result;
		}
		// detect if analogRead was used from an interrupt
		// if so, our analogRead got canceled, so it must
		// be restarted.
		if (!analogReadBusyADC1) goto startADC1;
		__enable_irq();
		yield();
	}
#endif
}



void analogWriteDAC0(int val)
{
#if defined(_mk20dx256_) || defined(_mk20dx256vlh7_)
	SIM_SCGC2 |= SIM_SCGC2_DAC0;
	if (analog_reference_internal) {
		DAC0_C0 = DAC_C0_DACEN;  // 1.2V ref is DACREF_1
	} else {
		DAC0_C0 = DAC_C0_DACEN | DAC_C0_DACRFS; // 3.3V VDDA is DACREF_2
	}
	if (val < 0) val = 0;  // TODO: saturate instruction?
	else if (val > 4095) val = 4095;
	*(int16_t *)&(DAC0_DAT0L) = val;
#endif
}