view USB/pjrc/usb_keyboard_debug.c @ 50:ff4ae9501930

Adding initial version of Sony OA-S3400 converter. - Not fully reading for usage, but 90% of the way there for typing. - Some soldering is required for 2 keys to work properly (Shift and Shift Lock) - Even when complete, be careful when doing multiple key combos, as the key buffer is only cleared when all general keys are released (all except Shift, Shift Lock, and Code)
author Jacob Alexander <triplehaata@gmail.com>
date Mon, 07 May 2012 02:32:56 -0400
parents 8a09c4d30e16
children
line wrap: on
line source

/* USB Keyboard Plus Debug Channel Example for Teensy USB Development Board
 * http://www.pjrc.com/teensy/usb_keyboard.html
 * Copyright (c) 2009 PJRC.COM, LLC
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

// Version 1.0: Initial Release
// Version 1.1: Add support for Teensy 2.0

#define USB_SERIAL_PRIVATE_INCLUDE
#include "usb_keyboard_debug.h"

/**************************************************************************
 *
 *  Configurable Options
 *
 **************************************************************************/

// USB devices are supposed to implment a halt feature, which is
// rarely (if ever) used.  If you comment this line out, the halt
// code will be removed, saving 102 bytes of space (gcc 4.3.0).
// This is not strictly USB compliant, but works with all major
// operating systems.
#define SUPPORT_ENDPOINT_HALT



/**************************************************************************
 *
 *  Endpoint Buffer Configuration
 *
 **************************************************************************/

#define ENDPOINT0_SIZE		32

#define KEYBOARD_INTERFACE	0
#define KEYBOARD_ENDPOINT	3
#define KEYBOARD_SIZE		8
#define KEYBOARD_BUFFER		EP_DOUBLE_BUFFER

#define DEBUG_INTERFACE		1
#define DEBUG_TX_ENDPOINT	4
#define DEBUG_TX_SIZE		32
#define DEBUG_TX_BUFFER		EP_DOUBLE_BUFFER

static const uint8_t PROGMEM endpoint_config_table[] = {
	0,
	0,
	1, EP_TYPE_INTERRUPT_IN,  EP_SIZE(KEYBOARD_SIZE) | KEYBOARD_BUFFER,
	1, EP_TYPE_INTERRUPT_IN,  EP_SIZE(DEBUG_TX_SIZE) | DEBUG_TX_BUFFER
};


/**************************************************************************
 *
 *  Descriptor Data
 *
 **************************************************************************/

// Descriptors are the data that your computer reads when it auto-detects
// this USB device (called "enumeration" in USB lingo).  The most commonly
// changed items are editable at the top of this file.  Changing things
// in here should only be done by those who've read chapter 9 of the USB
// spec and relevant portions of any USB class specifications!


static const uint8_t PROGMEM device_descriptor[] = {
	18,					// bLength
	1,					// bDescriptorType
	0x00, 0x02,				// bcdUSB
	0,					// bDeviceClass
	0,					// bDeviceSubClass
	0,					// bDeviceProtocol
	ENDPOINT0_SIZE,				// bMaxPacketSize0
	LSB(VENDOR_ID), MSB(VENDOR_ID),		// idVendor
	LSB(PRODUCT_ID), MSB(PRODUCT_ID),	// idProduct
	0x00, 0x01,				// bcdDevice
	1,					// iManufacturer
	2,					// iProduct
	0,					// iSerialNumber
	1					// bNumConfigurations
};

// Keyboard Protocol 1, HID 1.11 spec, Appendix B, page 59-60
static const uint8_t PROGMEM keyboard_hid_report_desc[] = {
        0x05, 0x01,          // Usage Page (Generic Desktop),
        0x09, 0x06,          // Usage (Keyboard),
        0xA1, 0x01,          // Collection (Application),
        0x75, 0x01,          //   Report Size (1),
        0x95, 0x08,          //   Report Count (8),
        0x05, 0x07,          //   Usage Page (Key Codes),
        0x19, 0xE0,          //   Usage Minimum (224),
        0x29, 0xE7,          //   Usage Maximum (231),
        0x15, 0x00,          //   Logical Minimum (0),
        0x25, 0x01,          //   Logical Maximum (1),
        0x81, 0x02,          //   Input (Data, Variable, Absolute), ;Modifier byte
        0x95, 0x01,          //   Report Count (1),
        0x75, 0x08,          //   Report Size (8),
        0x81, 0x03,          //   Input (Constant),                 ;Reserved byte
        0x95, 0x05,          //   Report Count (5),
        0x75, 0x01,          //   Report Size (1),
        0x05, 0x08,          //   Usage Page (LEDs),
        0x19, 0x01,          //   Usage Minimum (1),
        0x29, 0x05,          //   Usage Maximum (5),
        0x91, 0x02,          //   Output (Data, Variable, Absolute), ;LED report
        0x95, 0x01,          //   Report Count (1),
        0x75, 0x03,          //   Report Size (3),
        0x91, 0x03,          //   Output (Constant),                 ;LED report padding
        0x95, 0x06,          //   Report Count (6),
        0x75, 0x08,          //   Report Size (8),
        0x15, 0x00,          //   Logical Minimum (0),
        0x25, 0x68,          //   Logical Maximum(104),
        0x05, 0x07,          //   Usage Page (Key Codes),
        0x19, 0x00,          //   Usage Minimum (0),
        0x29, 0x68,          //   Usage Maximum (104),
        0x81, 0x00,          //   Input (Data, Array),
        0xc0                 // End Collection
};

static const uint8_t PROGMEM debug_hid_report_desc[] = {
	//0x06, 0x30, 0xFF,			// Usage Page 0xFF31 (vendor defined)
	0x06, 0x31, 0xFF,			// Usage Page 0xFF31 (vendor defined)
	0x09, 0x74,				// Usage 0x74
	0xA1, 0x53,				// Collection 0x53
	0x75, 0x08,				// report size = 8 bits
	0x15, 0x00,				// logical minimum = 0
	0x26, 0xFF, 0x00,			// logical maximum = 255
	0x95, DEBUG_TX_SIZE,			// report count
	0x09, 0x75,				// usage
	0x81, 0x02,				// Input (array)
	0xC0					// end collection
};

#define CONFIG1_DESC_SIZE        (9+9+9+7+9+9+7)
#define KEYBOARD_HID_DESC_OFFSET (9+9)
#define DEBUG_HID_DESC_OFFSET    (9+9+9+7+9)
static const uint8_t PROGMEM config1_descriptor[CONFIG1_DESC_SIZE] = {
	// configuration descriptor, USB spec 9.6.3, page 264-266, Table 9-10
	9, 					// bLength;
	2,					// bDescriptorType;
	LSB(CONFIG1_DESC_SIZE),			// wTotalLength
	MSB(CONFIG1_DESC_SIZE),
	2,					// bNumInterfaces
	1,					// bConfigurationValue
	0,					// iConfiguration
	0xC0,					// bmAttributes
	50,					// bMaxPower
	// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
	9,					// bLength
	4,					// bDescriptorType
	KEYBOARD_INTERFACE,			// bInterfaceNumber
	0,					// bAlternateSetting
	1,					// bNumEndpoints
	0x03,					// bInterfaceClass (0x03 = HID)
	0x01,					// bInterfaceSubClass (0x01 = Boot)
	0x01,					// bInterfaceProtocol (0x01 = Keyboard)
	0,					// iInterface
	// HID interface descriptor, HID 1.11 spec, section 6.2.1
	9,					// bLength
	0x21,					// bDescriptorType
	0x11, 0x01,				// bcdHID
	0,					// bCountryCode
	1,					// bNumDescriptors
	0x22,					// bDescriptorType
	sizeof(keyboard_hid_report_desc),	// wDescriptorLength
	0,
	// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
	7,					// bLength
	5,					// bDescriptorType
	KEYBOARD_ENDPOINT | 0x80,		// bEndpointAddress
	0x03,					// bmAttributes (0x03=intr)
	KEYBOARD_SIZE, 0,			// wMaxPacketSize
	1,					// bInterval
	// interface descriptor, USB spec 9.6.5, page 267-269, Table 9-12
	9,					// bLength
	4,					// bDescriptorType
	DEBUG_INTERFACE,			// bInterfaceNumber
	0,					// bAlternateSetting
	1,					// bNumEndpoints
	0x03,					// bInterfaceClass (0x03 = HID)
	0x00,					// bInterfaceSubClass
	0x00,					// bInterfaceProtocol
	0,					// iInterface
	// HID interface descriptor, HID 1.11 spec, section 6.2.1
	9,					// bLength
	0x21,					// bDescriptorType
	0x11, 0x01,				// bcdHID
	0,					// bCountryCode
	1,					// bNumDescriptors
	0x22,					// bDescriptorType
	sizeof(debug_hid_report_desc),		// wDescriptorLength
	0,
	// endpoint descriptor, USB spec 9.6.6, page 269-271, Table 9-13
	7,					// bLength
	5,					// bDescriptorType
	DEBUG_TX_ENDPOINT | 0x80,		// bEndpointAddress
	0x03,					// bmAttributes (0x03=intr)
	DEBUG_TX_SIZE, 0,			// wMaxPacketSize
	1					// bInterval
};

// If you're desperate for a little extra code memory, these strings
// can be completely removed if iManufacturer, iProduct, iSerialNumber
// in the device desciptor are changed to zeros.
struct usb_string_descriptor_struct {
	uint8_t bLength;
	uint8_t bDescriptorType;
	int16_t wString[];
};
static const struct usb_string_descriptor_struct PROGMEM string0 = {
	4,
	3,
	{0x0409}
};
static const struct usb_string_descriptor_struct PROGMEM string1 = {
	sizeof(STR_MANUFACTURER),
	3,
	STR_MANUFACTURER
};
static const struct usb_string_descriptor_struct PROGMEM string2 = {
	sizeof(STR_PRODUCT),
	3,
	STR_PRODUCT
};

// This table defines which descriptor data is sent for each specific
// request from the host (in wValue and wIndex).
static const struct descriptor_list_struct {
	uint16_t	wValue;
	uint16_t	wIndex;
	const uint8_t	*addr;
	uint8_t		length;
} PROGMEM descriptor_list[] = {
	{0x0100, 0x0000, device_descriptor, sizeof(device_descriptor)},
	{0x0200, 0x0000, config1_descriptor, sizeof(config1_descriptor)},
	{0x2200, KEYBOARD_INTERFACE, keyboard_hid_report_desc, sizeof(keyboard_hid_report_desc)},
	{0x2100, KEYBOARD_INTERFACE, config1_descriptor+KEYBOARD_HID_DESC_OFFSET, 9},
	{0x2200, DEBUG_INTERFACE, debug_hid_report_desc, sizeof(debug_hid_report_desc)},
	{0x2100, DEBUG_INTERFACE, config1_descriptor+DEBUG_HID_DESC_OFFSET, 9},
	{0x0300, 0x0000, (const uint8_t *)&string0, 4},
	{0x0301, 0x0409, (const uint8_t *)&string1, sizeof(STR_MANUFACTURER)},
	{0x0302, 0x0409, (const uint8_t *)&string2, sizeof(STR_PRODUCT)}
};
#define NUM_DESC_LIST (sizeof(descriptor_list)/sizeof(struct descriptor_list_struct))


/**************************************************************************
 *
 *  Variables - these are the only non-stack RAM usage
 *
 **************************************************************************/

// zero when we are not configured, non-zero when enumerated
static volatile uint8_t usb_configuration=0;

// the time remaining before we transmit any partially full
// packet, or send a zero length packet.
static volatile uint8_t debug_flush_timer=0;

// protocol setting from the host.  We use exactly the same report
// either way, so this variable only stores the setting since we
// are required to be able to report which setting is in use.
static uint8_t keyboard_protocol=1;

// the idle configuration, how often we send the report to the
// host (ms * 4) even when it hasn't changed
static uint8_t keyboard_idle_config=125;

// count until idle timeout
static uint8_t keyboard_idle_count=0;


/**************************************************************************
 *
 *  Public Functions - these are the API intended for the user
 *
 **************************************************************************/


// initialize USB
void usb_init(void)
{
	HW_CONFIG();
	USB_FREEZE();				// enable USB
	PLL_CONFIG();				// config PLL
        while (!(PLLCSR & (1<<PLOCK))) ;	// wait for PLL lock
        USB_CONFIG();				// start USB clock
        UDCON = 0;				// enable attach resistor
	usb_configuration = 0;
        UDIEN = (1<<EORSTE)|(1<<SOFE);
	sei();
}

// return 0 if the USB is not configured, or the configuration
// number selected by the HOST
uint8_t usb_configured(void)
{
	return usb_configuration;
}


// perform a single keystroke
int8_t usb_keyboard_press(uint8_t key, uint8_t modifier)
{
	int8_t r;

	USBKeys_Modifiers = modifier;
	USBKeys_Array[0] = key;
	r = usb_keyboard_send();
	if (r) return r;
	USBKeys_Modifiers = 0;
	USBKeys_Array[0] = 0;
	return usb_keyboard_send();
}

// send the contents of USBKeys_Array and USBKeys_Modifiers
int8_t usb_keyboard_send(void)
{
	uint8_t i, intr_state, timeout;

	if (!usb_configuration) return -1;
	intr_state = SREG;
	cli();
	UENUM = KEYBOARD_ENDPOINT;
	timeout = UDFNUML + 50;
	while (1) {
		// are we ready to transmit?
		if (UEINTX & (1<<RWAL)) break;
		SREG = intr_state;
		// has the USB gone offline?
		if (!usb_configuration) return -1;
		// have we waited too long?
		if (UDFNUML == timeout) return -1;
		// get ready to try checking again
		intr_state = SREG;
		cli();
		UENUM = KEYBOARD_ENDPOINT;
	}
	UEDATX = USBKeys_Modifiers;
	UEDATX = 0;
	for (i=0; i<6; i++) {
		UEDATX = USBKeys_Array[i];
	}
	UEINTX = 0x3A;
	keyboard_idle_count = 0;
	SREG = intr_state;
	return 0;
}

// transmit a character.  0 returned on success, -1 on error
int8_t usb_debug_putchar(uint8_t c)
{
	static uint8_t previous_timeout=0;
	uint8_t timeout, intr_state;

	// if we're not online (enumerated and configured), error
	if (!usb_configuration) return -1;
	// interrupts are disabled so these functions can be
	// used from the main program or interrupt context,
	// even both in the same program!
	intr_state = SREG;
	cli();
	UENUM = DEBUG_TX_ENDPOINT;
	// if we gave up due to timeout before, don't wait again
	if (previous_timeout) {
		if (!(UEINTX & (1<<RWAL))) {
			SREG = intr_state;
			return -1;
		}
		previous_timeout = 0;
	}
	// wait for the FIFO to be ready to accept data
	timeout = UDFNUML + 4;
	while (1) {
		// are we ready to transmit?
		if (UEINTX & (1<<RWAL)) break;
		SREG = intr_state;
		// have we waited too long?
		if (UDFNUML == timeout) {
			previous_timeout = 1;
			return -1;
		}
		// has the USB gone offline?
		if (!usb_configuration) return -1;
		// get ready to try checking again
		intr_state = SREG;
		cli();
		UENUM = DEBUG_TX_ENDPOINT;
	}
	// actually write the byte into the FIFO
	UEDATX = c;
	// if this completed a packet, transmit it now!
	if (!(UEINTX & (1<<RWAL))) {
		UEINTX = 0x3A;
		debug_flush_timer = 0;
	} else {
		debug_flush_timer = 2;
	}
	SREG = intr_state;
	return 0;
}


// immediately transmit any buffered output.
void usb_debug_flush_output(void)
{
	uint8_t intr_state;

	intr_state = SREG;
	cli();
	if (debug_flush_timer) {
		UENUM = DEBUG_TX_ENDPOINT;
		while ((UEINTX & (1<<RWAL))) {
			UEDATX = 0;
		}
		UEINTX = 0x3A;
		debug_flush_timer = 0;
	}
	SREG = intr_state;
}



/**************************************************************************
 *
 *  Private Functions - not intended for general user consumption....
 *
 **************************************************************************/



// USB Device Interrupt - handle all device-level events
// the transmit buffer flushing is triggered by the start of frame
//
ISR(USB_GEN_vect)
{
	uint8_t intbits, t, i;
	static uint8_t div4=0;

        intbits = UDINT;
        UDINT = 0;
        if (intbits & (1<<EORSTI)) {
		UENUM = 0;
		UECONX = 1;
		UECFG0X = EP_TYPE_CONTROL;
		UECFG1X = EP_SIZE(ENDPOINT0_SIZE) | EP_SINGLE_BUFFER;
		UEIENX = (1<<RXSTPE);
		usb_configuration = 0;
        }
	if ((intbits & (1<<SOFI)) && usb_configuration) {
		t = debug_flush_timer;
		if (t) {
			debug_flush_timer = -- t;
			if (!t) {
				UENUM = DEBUG_TX_ENDPOINT;
				while ((UEINTX & (1<<RWAL))) {
					UEDATX = 0;
				}
				UEINTX = 0x3A;
			}
		}
		if (keyboard_idle_config && (++div4 & 3) == 0) {
			UENUM = KEYBOARD_ENDPOINT;
			if (UEINTX & (1<<RWAL)) {
				keyboard_idle_count++;
				if (keyboard_idle_count == keyboard_idle_config) {
					keyboard_idle_count = 0;
					UEDATX = USBKeys_Modifiers;
					UEDATX = 0;
					for (i=0; i<6; i++) {
						UEDATX = USBKeys_Array[i];
					}
					UEINTX = 0x3A;
				}
			}
		}
	}
}



// Misc functions to wait for ready and send/receive packets
static inline void usb_wait_in_ready(void)
{
	while (!(UEINTX & (1<<TXINI))) ;
}
static inline void usb_send_in(void)
{
	UEINTX = ~(1<<TXINI);
}
static inline void usb_wait_receive_out(void)
{
	while (!(UEINTX & (1<<RXOUTI))) ;
}
static inline void usb_ack_out(void)
{
	UEINTX = ~(1<<RXOUTI);
}



// USB Endpoint Interrupt - endpoint 0 is handled here.  The
// other endpoints are manipulated by the user-callable
// functions, and the start-of-frame interrupt.
//
ISR(USB_COM_vect)
{
        uint8_t intbits;
	const uint8_t *list;
        const uint8_t *cfg;
	uint8_t i, n, len, en;
	uint8_t bmRequestType;
	uint8_t bRequest;
	uint16_t wValue;
	uint16_t wIndex;
	uint16_t wLength;
	uint16_t desc_val;
	const uint8_t *desc_addr;
	uint8_t	desc_length;

        UENUM = 0;
	intbits = UEINTX;
        if (intbits & (1<<RXSTPI)) {
                bmRequestType = UEDATX;
                bRequest = UEDATX;
                wValue = UEDATX;
                wValue |= (UEDATX << 8);
                wIndex = UEDATX;
                wIndex |= (UEDATX << 8);
                wLength = UEDATX;
                wLength |= (UEDATX << 8);
                UEINTX = ~((1<<RXSTPI) | (1<<RXOUTI) | (1<<TXINI));
                if (bRequest == GET_DESCRIPTOR) {
			list = (const uint8_t *)descriptor_list;
			for (i=0; ; i++) {
				if (i >= NUM_DESC_LIST) {
					UECONX = (1<<STALLRQ)|(1<<EPEN);  //stall
					return;
				}
				desc_val = pgm_read_word(list);
				if (desc_val != wValue) {
					list += sizeof(struct descriptor_list_struct);
					continue;
				}
				list += 2;
				desc_val = pgm_read_word(list);
				if (desc_val != wIndex) {
					list += sizeof(struct descriptor_list_struct)-2;
					continue;
				}
				list += 2;
				desc_addr = (const uint8_t *)pgm_read_word(list);
				list += 2;
				desc_length = pgm_read_byte(list);
				break;
			}
			len = (wLength < 256) ? wLength : 255;
			if (len > desc_length) len = desc_length;
			do {
				// wait for host ready for IN packet
				do {
					i = UEINTX;
				} while (!(i & ((1<<TXINI)|(1<<RXOUTI))));
				if (i & (1<<RXOUTI)) return;	// abort
				// send IN packet
				n = len < ENDPOINT0_SIZE ? len : ENDPOINT0_SIZE;
				for (i = n; i; i--) {
					UEDATX = pgm_read_byte(desc_addr++);
				}
				len -= n;
				usb_send_in();
			} while (len || n == ENDPOINT0_SIZE);
			return;
                }
		if (bRequest == SET_ADDRESS) {
			usb_send_in();
			usb_wait_in_ready();
			UDADDR = wValue | (1<<ADDEN);
			return;
		}
		if (bRequest == SET_CONFIGURATION && bmRequestType == 0) {
			usb_configuration = wValue;
			usb_send_in();
			cfg = endpoint_config_table;
			for (i=1; i<5; i++) {
				UENUM = i;
				en = pgm_read_byte(cfg++);
				UECONX = en;
				if (en) {
					UECFG0X = pgm_read_byte(cfg++);
					UECFG1X = pgm_read_byte(cfg++);
				}
			}
        		UERST = 0x1E;
        		UERST = 0;
			return;
		}
		if (bRequest == GET_CONFIGURATION && bmRequestType == 0x80) {
			usb_wait_in_ready();
			UEDATX = usb_configuration;
			usb_send_in();
			return;
		}

		if (bRequest == GET_STATUS) {
			usb_wait_in_ready();
			i = 0;
			#ifdef SUPPORT_ENDPOINT_HALT
			if (bmRequestType == 0x82) {
				UENUM = wIndex;
				if (UECONX & (1<<STALLRQ)) i = 1;
				UENUM = 0;
			}
			#endif
			UEDATX = i;
			UEDATX = 0;
			usb_send_in();
			return;
		}
		#ifdef SUPPORT_ENDPOINT_HALT
		if ((bRequest == CLEAR_FEATURE || bRequest == SET_FEATURE)
		  && bmRequestType == 0x02 && wValue == 0) {
			i = wIndex & 0x7F;
			if (i >= 1 && i <= MAX_ENDPOINT) {
				usb_send_in();
				UENUM = i;
				if (bRequest == SET_FEATURE) {
					UECONX = (1<<STALLRQ)|(1<<EPEN);
				} else {
					UECONX = (1<<STALLRQC)|(1<<RSTDT)|(1<<EPEN);
					UERST = (1 << i);
					UERST = 0;
				}
				return;
			}
		}
		#endif
		if (wIndex == KEYBOARD_INTERFACE) {
			if (bmRequestType == 0xA1) {
				if (bRequest == HID_GET_REPORT) {
					usb_wait_in_ready();
					UEDATX = USBKeys_Modifiers;
					UEDATX = 0;
					for (i=0; i<6; i++) {
						UEDATX = USBKeys_Array[i];
					}
					usb_send_in();
					return;
				}
				if (bRequest == HID_GET_IDLE) {
					usb_wait_in_ready();
					UEDATX = keyboard_idle_config;
					usb_send_in();
					return;
				}
				if (bRequest == HID_GET_PROTOCOL) {
					usb_wait_in_ready();
					UEDATX = keyboard_protocol;
					usb_send_in();
					return;
				}
			}
			if (bmRequestType == 0x21) {
				if (bRequest == HID_SET_REPORT) {
					usb_wait_receive_out();
					USBKeys_LEDs = UEDATX;
					usb_ack_out();
					usb_send_in();
					return;
				}
				if (bRequest == HID_SET_IDLE) {
					keyboard_idle_config = (wValue >> 8);
					keyboard_idle_count = 0;
					//usb_wait_in_ready();
					usb_send_in();
					return;
				}
				if (bRequest == HID_SET_PROTOCOL) {
					keyboard_protocol = wValue;
					//usb_wait_in_ready();
					usb_send_in();
					return;
				}
			}
		}
		if (wIndex == DEBUG_INTERFACE) {
			if (bRequest == HID_GET_REPORT && bmRequestType == 0xA1) {
				len = wLength;
				do {
					// wait for host ready for IN packet
					do {
						i = UEINTX;
					} while (!(i & ((1<<TXINI)|(1<<RXOUTI))));
					if (i & (1<<RXOUTI)) return;	// abort
					// send IN packet
					n = len < ENDPOINT0_SIZE ? len : ENDPOINT0_SIZE;
					for (i = n; i; i--) {
						UEDATX = 0;
					}
					len -= n;
					usb_send_in();
				} while (len || n == ENDPOINT0_SIZE);
				return;
			}
		}
	}
	UECONX = (1<<STALLRQ) | (1<<EPEN);	// stall
}