# HG changeset patch # User Jacob Alexander # Date 1426983161 25200 # Node ID bcdc04cb8e2ef80a49b7fa14a4212c87a259072a # Parent 8325f8c916639099737dbabcf0c2b6ea67ba1ff5 Initial LED support for ISSI IS31FL3731C - Not ready for advanced support yet - Basic register and page writing support complete diff -r 8325f8c91663 -r bcdc04cb8e2e Scan/ISSILed/led_scan.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Scan/ISSILed/led_scan.c Sat Mar 21 17:12:41 2015 -0700 @@ -0,0 +1,706 @@ +/* Copyright (C) 2014-2015 by Jacob Alexander + * + * This file is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This file is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this file. If not, see . + */ + +// ----- Includes ----- + +// Compiler Includes +#include + +// Project Includes +#include +#include +#include + +// Local Includes +#include "led_scan.h" + + + +// ----- Defines ----- + +#define I2C_TxBufferLength 300 +#define I2C_RxBufferLength 8 + +#define LED_BufferLength 144 + + +// ----- Structs ----- + +typedef struct I2C_Buffer { + uint16_t head; + uint16_t tail; + uint8_t sequencePos; + uint16_t size; + uint8_t *buffer; +} I2C_Buffer; + +typedef struct LED_Buffer { + uint8_t buffer[LED_BufferLength]; +} LED_Buffer; + + + +// ----- Function Declarations ----- + +// CLI Functions +void cliFunc_echo( char* args ); +void cliFunc_i2cRecv( char* args ); +void cliFunc_i2cSend( char* args ); +void cliFunc_ledTest( char* args ); +void cliFunc_ledZero( char* args ); + +uint8_t I2C_TxBufferPop(); +void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer ); +uint16_t I2C_BufferLen( I2C_Buffer *buffer ); +uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen ); + + + +// ----- Variables ----- + +// Scan Module command dictionary +CLIDict_Entry( i2cRecv, "Send I2C sequence of bytes and expect a reply of 1 byte on the last sequence." NL "\t\tUse |'s to split sequences with a stop." ); +CLIDict_Entry( i2cSend, "Send I2C sequence of bytes. Use |'s to split sequences with a stop." ); +CLIDict_Entry( ledTest, "Test out the led pages." ); +CLIDict_Entry( ledZero, "Zero out LED register pages (non-configuration)." ); + +CLIDict_Def( ledCLIDict, "ISSI LED Module Commands" ) = { + CLIDict_Item( i2cRecv ), + CLIDict_Item( i2cSend ), + CLIDict_Item( ledTest ), + CLIDict_Item( ledZero ), + { 0, 0, 0 } // Null entry for dictionary end +}; + + + +// Before sending the sequence, I2C_TxBuffer_CurLen is assigned and as each byte is sent, it is decremented +// Once I2C_TxBuffer_CurLen reaches zero, a STOP on the I2C bus is sent +volatile uint8_t I2C_TxBufferPtr[ I2C_TxBufferLength ]; +volatile uint8_t I2C_RxBufferPtr[ I2C_TxBufferLength ]; + +volatile I2C_Buffer I2C_TxBuffer = { 0, 0, 0, I2C_TxBufferLength, (uint8_t*)I2C_TxBufferPtr }; +volatile I2C_Buffer I2C_RxBuffer = { 0, 0, 0, I2C_RxBufferLength, (uint8_t*)I2C_RxBufferPtr }; + +LED_Buffer LED_pageBuffer; + +// A bit mask determining which LEDs are enabled in the ISSI chip +// 0x00 -> 0x11 +const uint8_t LED_ledEnableMask[] = { +0xE8, // I2C address +0x00, // Starting register address +0xFF, 0xFF, // C1-1 -> C1-16 +0xFF, 0xFF, // C2-1 -> C2-16 +0xFF, 0xFF, // C3-1 -> C3-16 +0xFF, 0xFF, // C4-1 -> C4-16 +0xFF, 0xFF, // C5-1 -> C5-16 +0xFF, 0xFF, // C6-1 -> C6-16 +0xFF, 0xFF, // C7-1 -> C7-16 +0xFF, 0xFF, // C8-1 -> C8-16 +0xFF, 0xFF, // C9-1 -> C9-16 +}; + +// XXX Pre-fill example of buffers +const uint8_t examplePage[] = { +0xE8, // I2C address +0x24, // Starting register address +0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, // C1-1 -> C1-16 +0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, // C2-1 -> C2-16 +0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, 0x2D, 0x2E, 0x2F, // C3-1 -> C3-16 +0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, // C4-1 -> C4-16 +0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C, 0x4D, 0x4E, 0x4F, // C5-1 -> C5-16 +0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x5B, 0x5C, 0x5D, 0x5E, 0x5F, // C6-1 -> C6-16 +0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A, 0x6B, 0x6C, 0x6D, 0x6E, 0x6F, // C7-1 -> C7-16 +0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A, 0x7B, 0x7C, 0x7D, 0x7E, 0x7F, // C8-1 -> C8-16 +0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8A, 0x8B, 0x8C, 0x8D, 0x8E, 0x8F, // C9-1 -> C9-16 +}; + + + +// ----- Interrupt Functions ----- + +void i2c0_isr() +{ + cli(); // Disable Interrupts + + uint8_t status = I2C0_S; // Read I2C Bus status + + // Master Mode Transmit + if ( I2C0_C1 & I2C_C1_TX ) + { + // Check current use of the I2C bus + // Currently sending data + if ( I2C_TxBuffer.sequencePos > 0 ) + { + // Make sure slave sent an ACK + if ( status & I2C_S_RXAK ) + { + // NACK Detected, disable interrupt + erro_print("I2C NAK detected..."); + I2C0_C1 = I2C_C1_IICEN; + + // Abort Tx Buffer + I2C_TxBuffer.head = 0; + I2C_TxBuffer.tail = 0; + I2C_TxBuffer.sequencePos = 0; + } + else + { + // Transmit byte + I2C0_D = I2C_TxBufferPop(); + } + } + // Receiving data + else if ( I2C_RxBuffer.sequencePos > 0 ) + { + // Master Receive, addr sent + if ( status & I2C_S_ARBL ) + { + // Arbitration Lost + erro_print("Arbitration lost..."); + // TODO Abort Rx + + I2C0_C1 = I2C_C1_IICEN; + I2C0_S = I2C_S_ARBL | I2C_S_IICIF; // Clear ARBL flag and interrupt + } + if ( status & I2C_S_RXAK ) + { + // Slave Address NACK Detected, disable interrupt + erro_print("Slave Address I2C NAK detected..."); + // TODO Abort Rx + + I2C0_C1 = I2C_C1_IICEN; + } + else + { + dbug_print("Attempting to read byte"); + I2C0_C1 = I2C_RxBuffer.sequencePos == 1 + ? I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK // Single byte read + : I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST; // Multi-byte read + } + } + else + { + /* + dbug_msg("STOP - "); + printHex( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) ); + print(NL); + */ + + // Delay around STOP to make sure it actually happens... + delayMicroseconds( 1 ); + I2C0_C1 = I2C_C1_IICEN; // Send STOP + delayMicroseconds( 7 ); + + // If there is another sequence, start sending + if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) < I2C_TxBuffer.size ) + { + // Clear status flags + I2C0_S = I2C_S_IICIF | I2C_S_ARBL; + + // Wait...till the master dies + while ( I2C0_S & I2C_S_BUSY ); + + // Enable I2C interrupt + I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX; + + // Transmit byte + I2C0_D = I2C_TxBufferPop(); + } + } + } + // Master Mode Receive + else + { + // XXX Do we need to handle 2nd last byte? + //I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TXAK; // No STOP, Rx, NAK on recv + + // Last byte + if ( I2C_TxBuffer.sequencePos <= 1 ) + { + // Change to Tx mode + I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX; + + // Grab last byte + I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer ); + + delayMicroseconds( 1 ); // Should be enough time before issuing the stop + I2C0_C1 = I2C_C1_IICEN; // Send STOP + } + else + { + // Retrieve data + I2C_BufferPush( I2C0_D, (I2C_Buffer*)&I2C_RxBuffer ); + } + } + + I2C0_S = I2C_S_IICIF; // Clear interrupt + + sei(); // Re-enable Interrupts +} + + + +// ----- Functions ----- + +inline void I2C_setup() +{ + // Enable I2C internal clock + SIM_SCGC4 |= SIM_SCGC4_I2C0; // Bus 0 + + // External pull-up resistor + PORTB_PCR0 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2); + PORTB_PCR1 = PORT_PCR_ODE | PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(2); + + // SCL Frequency Divider + // 400kHz -> 120 (0x85) @ 48 MHz F_BUS + I2C0_F = 0x85; + I2C0_FLT = 4; + I2C0_C1 = I2C_C1_IICEN; + I2C0_C2 = I2C_C2_HDRS; // High drive select +//}, + + // Enable I2C Interrupt + NVIC_ENABLE_IRQ( IRQ_I2C0 ); +} + +void LED_zeroPages( uint8_t startPage, uint8_t numPages, uint8_t startReg, uint8_t endReg ) +{ + // Page Setup + uint8_t pageSetup[] = { 0xE8, 0xFD, 0x00 }; + + // Max length of a page + chip id + reg start + uint8_t fullPage[ 0xB4 + 2 ] = { 0 }; // Max size of page + fullPage[0] = 0xE8; // Set chip id + fullPage[1] = startReg; // Set start reg + + // Iterate through given pages, zero'ing out the given register regions + for ( uint8_t page = startPage; page < startPage + numPages; page++ ) + { + // Set page + pageSetup[2] = page; + + // Setup page + while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 ) + delay(1); + + // Zero out page + while ( I2C_Send( fullPage, endReg - startReg + 2, 0 ) == 0 ) + delay(1); + } +} + +void LED_sendPage( uint8_t *buffer, uint8_t len, uint8_t page ) +{ + // Page Setup + uint8_t pageSetup[] = { 0xE8, 0xFD, page }; + + // Setup page + while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 ) + delay(1); + + // Write page to I2C Tx Buffer + while ( I2C_Send( buffer, len, 0 ) == 0 ) + delay(1); + +} + +void LED_writeReg( uint8_t reg, uint8_t val, uint8_t page ) +{ + // Page Setup + uint8_t pageSetup[] = { 0xE8, 0xFD, page }; + + // Reg Write Setup + uint8_t writeData[] = { 0xE8, reg, val }; + + // Setup page + while ( I2C_Send( pageSetup, sizeof( pageSetup ), 0 ) == 0 ) + delay(1); + + while ( I2C_Send( writeData, sizeof( writeData ), 0 ) == 0 ) + delay(1); +} + +// Setup +inline void LED_setup() +{ + // Register Scan CLI dictionary + CLI_registerDictionary( ledCLIDict, ledCLIDictName ); + + // Initialize I2C + I2C_setup(); + + // Zero out Frame Registers + // This needs to be done before disabling the hardware shutdown (or the leds will do undefined things) + LED_zeroPages( 0x0B, 1, 0x00, 0x0C ); // Control Registers + + // Disable Hardware shutdown of ISSI chip (pull high) + GPIOD_PDDR |= (1<<1); + PORTD_PCR1 = PORT_PCR_SRE | PORT_PCR_DSE | PORT_PCR_MUX(1); + GPIOD_PSOR |= (1<<1); + + // Clear LED Pages + LED_zeroPages( 0x00, 8, 0x00, 0xB4 ); // LED Registers + + // Enable LEDs based upon mask + LED_sendPage( (uint8_t*)LED_ledEnableMask, sizeof( LED_ledEnableMask ), 0 ); + + // Disable Software shutdown of ISSI chip + LED_writeReg( 0x0A, 0x01, 0x0B ); +} + + +inline uint8_t I2C_BufferCopy( uint8_t *data, uint8_t sendLen, uint8_t recvLen, I2C_Buffer *buffer ) +{ + uint8_t reTurn = 0; + + // If sendLen is greater than buffer fail right away + if ( sendLen > buffer->size ) + return 0; + + // Calculate new tail to determine if buffer has enough space + // The first element specifies the expected number of bytes from the slave (+1) + // The second element in the new buffer is the length of the buffer sequence (+1) + uint16_t newTail = buffer->tail + sendLen + 2; + if ( newTail >= buffer->size ) + newTail -= buffer->size; + + if ( I2C_BufferLen( buffer ) < sendLen + 2 ) + return 0; + +/* + print("|"); + printHex( sendLen + 2 ); + print("|"); + printHex( *tail ); + print("@"); + printHex( newTail ); + print("@"); +*/ + + // If buffer is clean, return 1, otherwise 2 + reTurn = buffer->head == buffer->tail ? 1 : 2; + + // Add to buffer, already know there is enough room (simplifies adding logic) + uint8_t bufferHeaderPos = 0; + for ( uint16_t c = 0; c < sendLen; c++ ) + { + // Add data to buffer + switch ( bufferHeaderPos ) + { + case 0: + buffer->buffer[ buffer->tail ] = recvLen; + bufferHeaderPos++; + c--; + break; + + case 1: + buffer->buffer[ buffer->tail ] = sendLen; + bufferHeaderPos++; + c--; + break; + + default: + buffer->buffer[ buffer->tail ] = data[ c ]; + break; + } + + // Check for wrap-around case + if ( buffer->tail + 1 >= buffer->size ) + { + buffer->tail = 0; + } + // Normal case + else + { + buffer->tail++; + } + } + + return reTurn; +} + + +inline uint16_t I2C_BufferLen( I2C_Buffer *buffer ) +{ + // Tail >= Head + if ( buffer->tail >= buffer->head ) + return buffer->head + buffer->size - buffer->tail; + + // Head > Tail + return buffer->head - buffer->tail; +} + + +void I2C_BufferPush( uint8_t byte, I2C_Buffer *buffer ) +{ + // Make sure buffer isn't full + if ( buffer->tail + 1 == buffer->head || ( buffer->head > buffer->tail && buffer->tail + 1 - buffer->size == buffer->head ) ) + { + warn_msg("I2C_BufferPush failed, buffer full: "); + printHex( byte ); + print( NL ); + return; + } + + // Check for wrap-around case + if ( buffer->tail + 1 >= buffer->size ) + { + buffer->tail = 0; + } + // Normal case + else + { + buffer->tail++; + } + + // Add byte to buffer + buffer->buffer[ buffer->tail ] = byte; +} + + +uint8_t I2C_TxBufferPop() +{ + // Return 0xFF if no buffer left (do not rely on this) + if ( I2C_BufferLen( (I2C_Buffer*)&I2C_TxBuffer ) >= I2C_TxBuffer.size ) + { + erro_msg("No buffer to pop an entry from... "); + printHex( I2C_TxBuffer.head ); + print(" "); + printHex( I2C_TxBuffer.tail ); + print(" "); + printHex( I2C_TxBuffer.sequencePos ); + print(NL); + return 0xFF; + } + + // If there is currently no sequence being sent, the first entry in the RingBuffer is the length + if ( I2C_TxBuffer.sequencePos == 0 ) + { + I2C_TxBuffer.sequencePos = 0xFF; // So this doesn't become an infinite loop + I2C_RxBuffer.sequencePos = I2C_TxBufferPop(); + I2C_TxBuffer.sequencePos = I2C_TxBufferPop(); + } + + uint8_t data = I2C_TxBuffer.buffer[ I2C_TxBuffer.head ]; + + // Prune head + I2C_TxBuffer.head++; + + // Wrap-around case + if ( I2C_TxBuffer.head >= I2C_TxBuffer.size ) + I2C_TxBuffer.head = 0; + + // Decrement buffer sequence (until next stop will be sent) + I2C_TxBuffer.sequencePos--; + + /* + dbug_msg("Popping: "); + printHex( data ); + print(" "); + printHex( I2C_TxBuffer.head ); + print(" "); + printHex( I2C_TxBuffer.tail ); + print(" "); + printHex( I2C_TxBuffer.sequencePos ); + print(NL); + */ + return data; +} + + +uint8_t I2C_Send( uint8_t *data, uint8_t sendLen, uint8_t recvLen ) +{ + // Check head and tail pointers + // If full, return 0 + // If empty, start up I2C Master Tx + // If buffer is non-empty and non-full, just append to the buffer + switch ( I2C_BufferCopy( data, sendLen, recvLen, (I2C_Buffer*)&I2C_TxBuffer ) ) + { + // Not enough buffer space... + case 0: + /* + erro_msg("Not enough Tx buffer space... "); + printHex( I2C_TxBuffer.head ); + print(":"); + printHex( I2C_TxBuffer.tail ); + print("+"); + printHex( sendLen ); + print("|"); + printHex( I2C_TxBuffer.size ); + print( NL ); + */ + return 0; + + // Empty buffer, initialize I2C + case 1: + // Clear status flags + I2C0_S = I2C_S_IICIF | I2C_S_ARBL; + + // Check to see if we already have control of the bus + if ( I2C0_C1 & I2C_C1_MST ) + { + // Already the master (ah yeah), send a repeated start + I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_RSTA | I2C_C1_TX; + } + // Otherwise, seize control + else + { + // Wait...till the master dies + while ( I2C0_S & I2C_S_BUSY ); + + // Now we're the master (ah yisss), get ready to send stuffs + I2C0_C1 = I2C_C1_IICEN | I2C_C1_MST | I2C_C1_TX; + } + + // Enable I2C interrupt + I2C0_C1 = I2C_C1_IICEN | I2C_C1_IICIE | I2C_C1_MST | I2C_C1_TX; + + // Depending on what type of transfer, the first byte is configured for R or W + I2C0_D = I2C_TxBufferPop(); + + return 1; + } + + // Dirty buffer, I2C already initialized + return 2; +} + + + +// LED State processing loop +inline uint8_t LED_scan() +{ + + // I2C Busy + // S & I2C_S_BUSY + //I2C_S_BUSY + + return 0; +} + + + +// ----- CLI Command Functions ----- + +void cliFunc_i2cSend( char* args ) +{ + char* curArgs; + char* arg1Ptr; + char* arg2Ptr = args; + + // Buffer used after interpretting the args, will be sent to I2C functions + // NOTE: Limited to 8 bytes currently (can be increased if necessary + #define i2cSend_BuffLenMax 8 + uint8_t buffer[ i2cSend_BuffLenMax ]; + uint8_t bufferLen = 0; + + // No \r\n by default after the command is entered + print( NL ); + info_msg("Sending: "); + + // Parse args until a \0 is found + while ( bufferLen < i2cSend_BuffLenMax ) + { + curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list + CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); + + // Stop processing args if no more are found + if ( *arg1Ptr == '\0' ) + break; + + // If | is found, end sequence and start new one + if ( *arg1Ptr == '|' ) + { + print("| "); + I2C_Send( buffer, bufferLen, 0 ); + bufferLen = 0; + continue; + } + + // Interpret the argument + buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr ); + + // Print out the arg + dPrint( arg1Ptr ); + print(" "); + } + + print( NL ); + + I2C_Send( buffer, bufferLen, 0 ); +} + +void cliFunc_i2cRecv( char* args ) +{ + char* curArgs; + char* arg1Ptr; + char* arg2Ptr = args; + + // Buffer used after interpretting the args, will be sent to I2C functions + // NOTE: Limited to 8 bytes currently (can be increased if necessary + #define i2cSend_BuffLenMax 8 + uint8_t buffer[ i2cSend_BuffLenMax ]; + uint8_t bufferLen = 0; + + // No \r\n by default after the command is entered + print( NL ); + info_msg("Sending: "); + + // Parse args until a \0 is found + while ( bufferLen < i2cSend_BuffLenMax ) + { + curArgs = arg2Ptr; // Use the previous 2nd arg pointer to separate the next arg from the list + CLI_argumentIsolation( curArgs, &arg1Ptr, &arg2Ptr ); + + // Stop processing args if no more are found + if ( *arg1Ptr == '\0' ) + break; + + // If | is found, end sequence and start new one + if ( *arg1Ptr == '|' ) + { + print("| "); + I2C_Send( buffer, bufferLen, 0 ); + bufferLen = 0; + continue; + } + + // Interpret the argument + buffer[ bufferLen++ ] = (uint8_t)numToInt( arg1Ptr ); + + // Print out the arg + dPrint( arg1Ptr ); + print(" "); + } + + print( NL ); + + I2C_Send( buffer, bufferLen, 1 ); // Only 1 byte is ever read at a time with the ISSI chip +} + +void cliFunc_ledTest( char* args ) +{ + print( NL ); // No \r\n by default after the command is entered + LED_sendPage( (uint8_t*)examplePage, sizeof( examplePage ), 0 ); +} + +void cliFunc_ledZero( char* args ) +{ + print( NL ); // No \r\n by default after the command is entered + LED_zeroPages( 0x00, 8, 0x24, 0xB4 ); // Only PWMs +} + diff -r 8325f8c91663 -r bcdc04cb8e2e Scan/ISSILed/led_scan.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Scan/ISSILed/led_scan.h Sat Mar 21 17:12:41 2015 -0700 @@ -0,0 +1,34 @@ +/* Copyright (C) 2014-2015 by Jacob Alexander + * + * This file is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This file is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this file. If not, see . + */ + +#ifndef __LED_SCAN_H +#define __LED_SCAN_H + +// ----- Includes ----- + +// Compiler Includes +#include + + + +// ----- Functions ----- + +void LED_setup(); +uint8_t LED_scan(); + + +#endif // __LED_SCAN_H + diff -r 8325f8c91663 -r bcdc04cb8e2e Scan/ISSILed/setup.cmake --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Scan/ISSILed/setup.cmake Sat Mar 21 17:12:41 2015 -0700 @@ -0,0 +1,30 @@ +###| CMake Kiibohd Controller Scan Module |### +# +# Written by Jacob Alexander in 2014-2015 for the Kiibohd Controller +# +# Released into the Public Domain +# +### + + +### +# Sub-module flag, cannot be included stand-alone +# +set ( SubModule 1 ) + + +### +# Module C files +# +set ( Module_SRCS + led_scan.c +) + + +### +# Compiler Family Compatibility +# +set ( ModuleCompatibility + arm +) +